
Combinatorial Completion by Rule Definition with Interactive
Value Colouring∗

Michael Breen

2005-8

Abstract

The combinatorial completion problem arises
where one wishes to define a set of rules which col-
lectively address all possible combinations of cir-
cumstances, as, for example, in a decision table.
After some rules have been defined but, e.g., mil-
lions of cases remain to be addressed, how can the
specifier best be helped to complete the remaining
rules so that they cover every possible scenario?
A novel technique is described based on providing
interactive feedback to the user during rule defini-
tion. This can be used with non-tabular as well as
tabular rules. Where previously quality would have
depended on essentially sample-based approaches
like testing, this technique makes it easy to adopt a
rigorously complete approach to considering large
numbers of possibilities.

1 The Combinatorial Completion
Problem

Table 1. shows, in the form of a decision table,
a set of rules specifying an activity to try depend-
ing on the outdoor conditions. Every possibility to
consider corresponds to some combination of val-
ues of the variables Weather , Temp (tempera-
ture), and Wind . Rule A, for instance, indicates
windsurfing to be a suitable activity in four dif-
ferent combinations, including the combination in
which Temp is warm , Weather is fine , and
Wind is breeze . The symbol ‘*’ means “don’t
care”; this is equivalent to a list of all possible val-
ues of the corresponding variable.

∗A shorter version of this article appeared in ACM SIG-
SOFT Software Engineering Notes (March 2005).

Table 1: An example of a decision table.

Rule Temp Weather Wind Action
A hot fine breeze windsurf

warm rain
B cold fine calm hillwalk

warm rain
C hot fine calm sunbathe
D * * gale read
E * snow breeze ski

calm

Whether in some kind of decision table or other-
wise, a frequent objective in defining a set of rules
is to cover every possibility, that is, for every possi-
ble combination of variable values, to have at least
one rule which specifies an outcome for that case.
In fact, Table 1 is not complete: there are some
cases not covered by any rule. Though this is not
generally obvious by inspection, it is a property
easily checked in software.

However, the problem of assisting a human be-
ing to complete such a set of rules is much less
straightforward. This problem, herein called the
combinatorial completion problem, has been de-
scribed and addressed in various ways previously.

2 Previous Approaches

The most obvious solution is simply to have the
software list all the uncovered combinations. This
is the approach taken by some decision table tools
and indeed it can work reasonably well where there
are not many combinations to consider. For exam-

1



ple, Table 2 contains the combinations not covered
by any rule in Table 1.

Table 2: Cases not covered in Table 1.

Temp Weather Wind
cold fine breeze
cold fog breeze
cold fog calm
cold rain breeze
hot fog breeze
hot fog calm
hot rain calm

warm fog breeze
warm fog calm

However, if there are thousands of possible com-
binations then the obvious solution is not very
helpful: in theory, the user could add an action or
outcome to each combination listed in order to cre-
ate a new rule for each – but at the cost of having to
define thousands of rules. To create rules like those
in Table 1, the user would need to sift through the
many individual combinations and find those with
identical outcomes which also may be grouped to-
gether to be covered by a single rule in the con-
junctive normal form (CNF) of the table.

An improvement over listing individual combi-
nations is to have a software tool itself arrange the
unconsidered combinations into groups. This is the
approach taken in a tool called SAST [1]; the re-
sult is a list of CNF conditions, somewhat like the
rows of Table 1 without the last column. Ideally,
the user would then merely need to add an out-
come to each condition to order to complete the
set of rules. However, there is no reason to sup-
pose that the desired outcome will be the same for
all of the combinations in each group - since the
program can have no knowledge of the outcomes
until the rules are completed. For example, had the
tool output the same condition as rule B in Table 1,
we might well create a new rule from it by adding

the action “hillwalk”; however, we might instead
decide that hillwalking is a good idea in, say, three
of the four cases covered but is not desirable when
it’s both cold and raining. Thus, we must break up
the condition provided by the tool across a number
of separate rules and we end up having to define
a more numerous and fragmented set of rules than
might otherwise have been arranged.

Of course, one way of managing this problem
is to re-organize the fragmented conditions into an
equivalent smaller set of conditions suitable to be
made into rules. Unfortunately, this becomes quite
difficult in non-trivial cases, where there are many
rules or many variables. Imagine just two vari-
ables, the first with possible values {A, B, C} and
the second, {P, Q, R} and consider the following
conditions in abbreviated form:

(A, PQ)

(BC, P)

(AB, R)

(C, QR)

– where, e.g., (A, PQ) means that the first variable
has the value A and the second is either P or Q.
Provided the outcomes in the appropriate cases are
the same, two rules would be sufficient to cover the
same set of combinations:

(AC, PQR)

(B, PR)

However, it is not immediately apparent that the
cases covered by the two sets of rules are the same,
even for this very limited example. In this case, the
simplest way to find the more concise arrangement
is to draw a grid with the possible values of the
variables on the axes; but this isn’t possible if there
are, say, ten variables.

A variation on the above approach would be
merely to fragment the conditions output by the
program as necessary, add the outcomes to form
rules, and then let software combine rules with the

2



same outcome as best it can. In fact, this task
is computationally as well as manually difficult.
However, the problem from a user’s point of view
is that this doesn’t avoid the labour of splitting up
the conditions and defining a larger set of rules in
the first place.

A variation on the idea of presenting pre-formed
conditions to the user is described by Seagle and
Duchessi [2]. The difference in their approach is
that the conditions output by the program, while
still covering all the unconsidered combinations
and no others, are not required to be mutually ex-
clusive. This means that the program is less re-
stricted in deriving conditions and so the user is
more likely to be able to find a condition covering
a reasonable number of cases for which the out-
come is the same. Each time the user forms a new
rule, the list of incomplete rules is updated so that
the final set of rules are still mutually exclusive.

However, the user may need to look through
many pre-formed conditions before finding one to
which an outcome can be added, especially if there
are many possible outcomes and many uncovered
combinations. Also, because the incomplete rules
generated either restrict each variable to a single
value or allow it to be “don’t care,” it is less use-
ful with non-boolean variables – since no condition
in which a variable is restricted to some proper,
non-unitary subset of its values will ever be avail-
able for selection (which would exclude all of the
conditions listed in the two alternative sets from
the example above): any potential rule with such a
condition will therefore still be replaced by many
separate rules. This difficulty is not easily fixed: to
let the program to produce conditions containing
proper subsets of two or more values would lead
to an exponential increase in the number of condi-
tions presented to the user, only very few of which
one would expect to be able to form into rules.

The reports [3] and [4], describe a completely
different approach to the problem:1 the computer

1The solution described in the two reports is essentially the
same, though, confusingly, the convention in one is to apply a

performs “structural analysis” on a decision ta-
ble, the results of which give the user an indi-
cation of how to complete the table. For exam-
ple, single-variable structural analysis might show
that, in every rule, a given boolean variable ap-
pears only either restricted to the value “true” or
else unrestricted (“don’t care”). A little thought
confirms that, provided the combinations covered
by the rules are mutually exclusive, this implies
that the table is incomplete and that it can be com-
pleted either by adding rules in which that variable
is restricted to the value “false” or by changing
to “don’t care” those which cover only the com-
binations where it is “true.” Structural analysis
over more than one variable produces more com-
plex results. An advantage of this approach is that
the user has the choice of modifying existing rules
where this will suffice rather than simply adding
new ones. However, the user must still manually
consider the structural analysis results in conjunc-
tion with the existing rules, a task which increases
in difficulty as the rules already defined increase in
complexity and number.

3 Factors to Consider

A few simple and related observations are rele-
vant to an alternative approach to the combinatorial
completion problem. First, in general, the number
of rules required to cover all combinations reduces
when one allows rules with the same outcome to
overlap, that is, to cover some of the same combi-
nations. For example, if the outcome is the same
for the combinations marked with an ‘X’ in Fig-
ure 1 then two rules with the non-mutually exclu-
sive conditions (AB, PQ) and (BC, QR) are suf-
ficient to cover them; otherwise, three rules are
needed. Note that we are assuming, for now, that
rule conditions may be expressed only in CNF:
clearly, a single rule would suffice if its condition
were expressed as a general formula.

In certain contexts, such as hardware design, this

logical inversion not present in the other.

3



XXX

XX

X X

CB

R

Q

P

A

Figure 1: Minimizing number of rules by allowing
overlaps.

property is often exploited but in others, including
most uses of decision tables, it is usual for all rules
to be mutually exclusive. Exclusivity does have
the merit of ensuring that, to change the outcome
for a specific case, one never needs to change more
than one rule. However, if a change affects several
combinations then it may involve changing several
rules anyway – conceivably, even more than one
would need to change had the rules been allowed
to overlap. Further, as will be seen below, it can
be an advantage to allow overlaps at least during
the process of rule definition, even if one intends
ultimately to make all the rules mutually exclusive.

The second point concerns impossible cases. If
certain combinations of values are impossible, then
it shouldn’t matter if some rules specify a particu-
lar outcome for these cases. For example, Rule D
in Table 1 covers combinations in which Temp is
hot and Weather is snow , which we might de-
fine to be impossible; if this were not permitted
then Rule D would need to be replaced with two
separate rules for what to do in a gale, one of which
would cover the single combination (cold , snow ,
gale ). In fact, rules with different outcomes may
even be allowed to overlap, provided the combi-
nations covered by both are impossible. Such a
situation is illustrated in Figure 2, where rules for
outcomes X and Y overlap in the impossible cases
represented by blanks.

XXX

X X

X

YY

YY

Y

Figure 2: Rules with different outcomes overlap-
ping in impossible cases.

Allowing rules to include impossible combina-
tions is especially useful when many combinations
are impossible. This may arise, for example, with
variables representing different aspects of a finite
state machine subject to many invariants. In such a
case, though there may be an enormous number of
possible combinations (i.e., possible states) these
may be far outnumbered by those which are impos-
sible. Allowing impossible combinations to pepper
those covered by the rules then means much fewer
rules are necessary.

Note that, for a software tool to allow rules to
include impossible combinations without report-
ing an inconsistency, the impossible combinations
cannot be regarded merely as cases with a different
outcome from the others. Thus, this approach is in-
compatible with that sometimes seen used with de-
cision tables, where rules (with a special “impossi-
ble” outcome) are included for impossible cases to
avoid any incompleteness error (and thereby con-
firm that all the possible cases have been covered
too); an approach which also suffers from the dis-
advantage of mixing up rules which are qualitively
different, with some stating an assumed or static
property and others a requirement or a dynamic
property. If such an approach is combined with
a convention of not allowing even rules with the
same outcome to overlap then the number of rules
required may multiply enormously. In the worst

4



case, one is also dealing with a relatively sparse
space of possible combinations so that the special
“impossible” rules far outnumber those for the pos-
sible cases.

Taking the above into account, the approach that
follows is designed for a situation where any cases
which are impossible are defined as such, sepa-
rately from the rules. This may be done in any
way, for example, as a set of formulas defining the
invariants of a finite state machine model, or using
a “constraint table” (the method supported by Stat-
estep, the same tool which implements the inter-
face described below); exactly how the impossible
cases, if any, are defined is not of further concern
here.

The approach does not, of course, prevent one
from specifying the impossible combinations using
special rules instead. Similarly, it is required nei-
ther that rules be allowed to overlap nor that there
be impossible combinations; it is merely that the
relative strengths of the approach are greatest when
these properties are exploited. Finally, as we will
see later, though the interface is designed for rules
with conditions expressed in CNF, this also is not
an essential requirement; indeed, the tool which
implements the solution below supports rules with
conditions expressed as formulas.

4 A New Approach

To restate the problem, we seek a way to help a
person to complete a set of rules which collec-
tively define an outcome in every possible combi-
nation of some set of circumstances. We are not
concerned with rule, or term, minimization per se,
but rather with a user interface and a heuristic ap-
proach wherein reducing the number of rules is
part of the way in which the effort required of the
user is minimized.

The nub of the problem is that the assistance any
software tool can give a user is limited by the fact
that it does not know the outcomes of the rules
yet to be defined. To address this, the approach

is based on providing an interactive dialogue be-
tween user and computer during rule definition, so
that the user’s knowledge of the desired outcomes
converges with a suitable set of missing cases to
form each new rule.

This is most easily introduced by way of exam-
ple. Assume we have defined the set of rules in Ta-
ble 1. We now wish to continue adding rules until
all possible combinations of Temp , Weather and
Wind are covered by some rule. Assume that we
have specified that certain combinations of vari-
able values are impossible. In particular, suppose
we have specified that Weather cannot be snow
unless Temp is cold .

For the following description, the sequence of
interactions we might go through in choosing the
condition of the new rule is shown, with the help
of colour coding, in Figure 3. For convenience,
Figure 4 conveys the same information but without
the use of colour.

At Step 0, we have not yet begun to specify a
condition for our new rule. However, the program
we are using displays the values we might select in
the rule’s CNF condition together with summary
information about each. In this case, it tells us
that the values snow and gale are redundant, that
is, there is no point in selecting either value as all
the combinations in which they appear are already
covered by some rule. For example, every possible
combination in which Weather is snow is cov-
ered by Rules D and E of Table 1.

All the other values are common, that is, there
are combinations in which they occur that are not
covered by any rule – but these values also occur
in combinations for which rules do exist. For ex-
ample, the value fine for Weather is common:
when it’s fine, Rule A tells us what to do if it’s
there’s a breeze and it’s warm; but no activity is
specified for when it’s breezy and cold.

Step 1: We begin by (perhaps arbitrarily) se-
lecting hot . Now, in classifying the values of
Weather and Wind , the program is considering
only those uncovered combinations in which Temp
is hot . Thus, snow has become impossible. Also

5



Temp Weather Wind

Step 0 cold fine breeze
hot fog calm
warm rain gale

snow

Step 1: hot fine breeze
Select fog calm
hot cold rain gale

warm snow

Step 2: hot rain breeze
Select fine calm
rain cold fog gale

warm snow

Step 3: hot rain calm
Select fine
calm cold fog breeze

warm snow gale

Step 4: hot fog calm
Select rain
fog cold fine breeze

warm snow gale

Legend: Unique
Common
Redundant
Impossible
Unselected

Figure 3: Choosing a new rule condition.

Temp Weather Wind

Step 0 (cold) (fine) (breeze)
(hot) (fog) (calm)
(warm) (rain) [gale]

[snow]

Step 1: (hot) [fine] (breeze)
Select (fog) (calm)
hot (cold) (rain) [gale]

(warm) {snow}

Step 2: (hot) (rain) [breeze]
Select [fine] calm
rain (cold) (fog) [gale]

[warm] {snow}

Step 3: hot rain calm
Select [fine]
calm [cold] fog [breeze]

[warm] {snow} [gale]

Step 4: hot fog calm
Select rain
fog (cold) [fine] (breeze)

(warm) {snow} [gale]

Legend: Unique
(Common)
[Redundant]
{Impossible}
Unselected

Figure 4: Non-colour version of Figure 3.

6



fine has become redundant: there is no combina-
tion in which Temp is hot and Weather is fine
that is not covered by Rules A, C, or D.

Step 2: Although our example is very small, let’s
imagine we’ve already defined so many rules that
it’s difficult to keep track of them. Seeing the re-
maining value classifications, we therefore form
the intention of selecting rain and breeze for
the remaining parts of the condition and specify-
ing windsurfing as the activity. However, when
we select rain for Weather , the value breeze
becomes redundant: the combination hot , rain ,
and breeze is already covered by Rule A. Fur-
ther, the value calm is now unique: if this value
is selected then the new rule will not cover any
combination in which Wind is calm that’s already
been covered.

Step 3: We could at this point change the values
selected for either Temp or Weather . However,
the easiest thing is to change tack: Instead of a
windsurfing rule, we decide to define one for when
to read a book and continue by selecting calm . By
now, all the remaining unselected values are either
redundant or impossible – except for fog .

Step 4: Since reading a book is also appropri-
ate for when it’s hot, foggy, and calm, we add fog
to the selected values for Weather . Some of the
other values again become common, for example,
breeze – since there’s no rule for the combina-
tion hot , fog , and breeze (which, arguably,
should be impossible). However, there’s no point
in selecting it – not because the other combina-
tion it would cause the rule to cover (hot , rain ,
breeze ) is already covered by an existing rule,
but because the activity for that case is not to read
a book, but to go windsurfing. The same consider-
ation applies in respect of the other unselected val-
ues which are common; we have therefore finished
defining the condition for our new rule.

The preceding example includes an instance of
each of the four possible classifications of vari-
able values that are employed in the approach; Fig-
ure 5 shows more formally how any value in a rule,
whether selected in a CNF condition or not, may

be classified as unique, common, redundant, or
impossible. Generally, neither redundant nor im-
possible values will be selected but the distinction
between the two is useful; for example, one may
wonder why a value is impossible, which may lead
to a mistake being discovered in the definition of
the impossible combinations.

4.1 Tolerating Overlaps

Earlier, we saw why it was convenient to allow
rules to overlap. It was also claimed that, even
when one prefers to make all rules mutually ex-
clusive, it is useful to allow new rules to overlap
existing ones and to defer dealing with the over-
laps until all the rules have been entered.

To see this, suppose we call the rule defined in
the previous example Rule F (that is, with the con-
dition shown at the end of Figures 3 and 4) and
we add another rule, also with the outcome “read”,
called Rule G. The condition for Rule G is dis-
played by the program as shown in Figure 6. Note
that we have included common as well as unique
values among those selected in the rule condition:
our tactic is to include these freely as long as all the
combinations covered by the rule have the same
outcome; the alternative to doing this is to define
more than one rule at this point to cover the same
set of combinations.

Having defined Rule G in this way, we may later
return to review the rules, at which point we find
that Rule F is now displayed as shown in Figure 7:
the value fog has become redundant in Rule F be-
cause of the overlap with Rule G. If Rule F is now
changed to exclude fog , that is, if only rain is
selected for Weather , the overlap is eliminated
and the values in each rule become unique. The
point to remember is, had we not allowed Rule G
to contain common as well as unique values, we
would have ended up defining more than these two
rules to cover the same set of combinations.

Of course, the above example worked out very
neatly partly because it is necessarily restricted in
size and consequently relatively simple. In gen-

7



P is empty? Val is impossible

Val is unique
Yes

No

Val is redundant
Yes

Let P = the set of combinations in C
which are possible

covered by rule R if Val was selected and no
other value was selected for the same variable

Let C = set of combinations that would be

Val is common

Start

all the rules other than rule R
Let O = set of combinations covered by

Yes

(P− O) is empty?

No

(P − O) = P ?

No

Figure 5: Classification of a variable value (Val)
for the CNF condition of a rule (R) in a set of rules.

Temp Weather Wind

cold fog breeze
hot fine calm
warm rain

snow gale

(Non-colour version:)

cold (fog) breeze
(hot) (fine) (calm)
warm (rain)

[snow] [gale]

Figure 6: Condition for Rule G as displayed.

Temp Weather Wind

hot fog calm
rain

cold fine breeze
warm snow gale

(Non-colour version:)

(hot) [fog] (calm)
rain

[cold] [fine] [breeze]
[warm] {snow} [gale]

Figure 7: Condition for Rule F as displayed after
Rule G has been defined.

8



eral, even after removing the newly redundant val-
ues when the rules had been completed, further
changes would still be needed to remove all the
overlaps, involving the break-up of some rules into
“smaller” rules. However, once again, the argu-
ment for not removing overlaps after all the rules
have been defined is a fairly strong one, especially
given that a tool can distinguish between overlaps,
where the rules involved specify the same out-
come, and conflicts, where the outcomes are dif-
ferent.

4.2 Non-CNF Rule Conditions

In principle, the approach may be used even where
rule conditions are not expressed in conjunctive
normal form. The tool supporting the approach al-
lows each rule condition to be specified either in
tabular form or as a formula – or a combination of
the two, wherein the overall condition is the logical
conjunction of the table and formula elements.

Consider Figure 8 as an example of a condition
for a rule that might be added to those in Table 1:
the condition is expressed here only by a formula;
though none of the values have been selected, they
are still classified with respect to this rule and the
others according to the same scheme. The values
breeze and gale for Wind are impossible sim-
ply because they are excluded by the formula; that
snow is impossible is derived as before from the
fact that this is inconsistent with “Temp = hot” and
(obviously) with the second part of the disjunction
also. Note that the value fine is redundant: thus,
we can see immediately that there is no point in
retaining the “OR Weather = fine” part of the for-
mula.

Given that the information displayed is essen-
tially a slice of data in CNF which to, a varying ex-
tent, will be incongruent with the structure of for-
mulas used to define rule conditions, the approach
can be expected to be less effective when used in
this context. However, what is displayed can still
be quite helpful. Also, this facility means that one
may use CNF in most cases, keeping the freedom

Temp Weather Wind

cold fine breeze
hot fog calm
warm rain gale

snow
(Temp = hot OR Weather = fine)
AND Wind = calm

(Non-colour version:)

[cold] [fine] {breeze}
(hot) fog (calm)
[warm] rain {gale}

{snow}
(Temp = hot OR Weather = fine)
AND Wind = calm

Figure 8: Classification of values for a condition
given as a formula.

to use a formula in any situation where CNF would
be unsuitable and inefficient.

5 Implementation

The example above is necessarily somewhat arti-
ficial. While it is easy to theorize about an ap-
proach to combinatorial completion problem, the
only proper way to evaluate them is to test it out
on realistic problems and develop an intuition for
its operation in practice. The approach described
here has been implemented in a tool called Stat-
estep, which is available from the author. Although
it is primarily designed to support a specification
method based on the creation of a finite state ma-
chine model [5], Statestep may also be used for
ordinary decision tables.

The non-polynomial computational complexity
of the underlying analysis which must be per-
formed – and the fact that this must be carried out
at speeds allowing interactive updating of colours

9



as a user a edits a rule – may be expected to re-
strict the size of models to which the approach can
be applied in practice. However, when using sym-
bolic algorithms on a reasonably modern PC, expe-
rience to date suggests that a desire to restrict the
variables to a number that will fit across the width
of a printed page is more likely to be the limiting
factor. A detailed discussion of algorithm and per-
formance issues is however beyond the scope of
this article and so is deferred to a separate account.

6 Conclusion

This article introduces a powerful new way of deal-
ing with the combinatorial completion problem,
one which allows interactive navigation of very
large sets of combinations. It differs from the clos-
est comparable techniques in that feedback is pro-
vided during rule definition and continually up-
dated; further, the user generally needs to consider
only a fixed, limited volume of information rather
than a long list of existing rules or uncovered com-
binations. Thus, one can easily adopt a system-
atic and exhaustive approach to considering pos-
sible scenarios, even in cases where such an idea
might typically be dismissed as infeasible.

References

[1] “SAST User Manual,” ATC-NY (previously
Odyssey Research Associates), Cornell Busi-
ness & Technology Park, 33 Thornwood
Drive, Suite 500, Ithaca, NY 14850-1250,
U.S.A., Tech. Rep. Version 0.2, 1993.

[2] J. P. Seagle and P. Duchessi, “Acquiring expert
rules with the aid of decision tables,” Euro-
pean Journal of Operational Research, vol. 84,
pp. 150–162, 1995.

[3] D. N. Hoover and Z. Chen, “Tbell: A math-
ematical tool for analyzing decision tables,”
NASA Langley, Hampton, Virginia, Tech.
Rep. Contractor Report 195027, 1994.

[4] D. Hoover and Z. Chen, “Tablewise, a decision
table tool,” in Proc. of the 10th Annual Con-
ference on Computer Assurance (COMPASS
’95). Gaithersburg, MD: IEEE, June 1995.

[5] M. Breen, “Experience of using a lightweight
formal specification method for a commercial
embedded system product line,” Requirements
Engineering Journal, vol. 10, pp. 161–172,
2005.

10


